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F O R C E D  O S C I L L A T I O N S  O F  T H R E E - L A Y E R E D  R O D  
W I T H  A L I Q U I D  I N T E R L A Y E R  

B. E. Kashevsldi UDC 534.113 

The problem of  damping Of three-layered rod oscillations by a in compressible Newtonian f luid which forms 

an interlayer between two ideally rectangular rods is considered. 

Introduction. One means of vibrational protection of constructions involves the use of absorbing layers in 

the form of coatings or interlayers. The methods of calculation used [ 1-3 ] are based on the hypothesis of plane 

transverse cross-sections, which reduces the problem to a differential equation for the transverse displacement of 

a neutral plane of the rod. The employment of this hypothesis is possible in the case when the elasticity moduli of 
the layers are not strongly different and the bending of each layer is accompanied by pure shearing strains or 

tensile-compressive strains. Otherwise, one should allow for transverse displacements in a layer of a soft material. 

This necessity arises, for example, when studying active vibrational protection with an electrorheological damping 

layer [4, 5 ], where the formulas of [3 ] for a rigid damping layer are used to analyze the experiments. 

To study the yield effect we consider oscillations of a pair of elastic rods with a Newtonian liquid interlayer. 

Identical rods with length I are rectangular in cross-section with width b and height 2h (h << b << D. The 
rods are fastened at one end and between them there is a gap of width 2H filled by a viscous liquid. The other end 

of the obtained "sandwich" is free. We study the effect of the liquid in the gap on small forced oscillations of the 

sandwich which arise due to the effect of a periodic transverse force applied to the free end. 

I. Liquid Dynamics. As is known [6 ], with bending of a rod, on different sides of the "neutral" surface, 
pure shearing strains originate on the convex side and compressive strains originate on the concave side. With 

bending of the sandwich, the surfaces bounding the liquid layer undergo deformations which are equal in value 

and opposite in sign. We select a system of coordinates with the origin on the "neutral" surface of the upper rod at 
the point of its attachment, the Z axis is directed along the undeformed rod, and the X axis along the smaller side 

of the cross section (upward). The length element dZ of the bases of both rods after deformation becomes equal 
to [6 ] 

t 

dZ = d Z  (1 _ h / R )  , 

where the sign "+" refers to the lower and the sign " - "  to the upper bases of the rods; R is the curvature radius 
of the surface X = X ( Z ) ,  

R .~ (d 2 X /d Z 2 )  - 1 

to 
The distance from the point of attachment to the point Z on the rod base after deformation becomes equal 
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In the considered case of an attached rod, d X / d Z  at zero is equal to zero and 

Z' (Z) = Z + h aX (l) 
- dZ" 

Thus, during bending the surfaces of the rods bounding the liquid layer move with local velocity 

V (Z, t) = _-_4- h ~ - j~  . (2) 

To describe the flow of the liquid relative to the deformed rods we consider a liquid layer bounded by plane 

surfaces moving with a velocity which is variable along their length and which is determined by relations (2). When 

the characteristic time of bending oscillations of the sandwich, which in order of magnitude is equal to the reciprocal 

frequency of eigenoscillations of the rods to,  l, is large compared to the characteristic time of the propagation of 

elastic disturbances in the liquid layer ~ = 1/c (c is the velocity of sound in liquid), i.e., to.T << 1, the compressibility 
of the liquid may be ignored. We also neglect the inertial force in the liquid compared to the viscosity force, which 

is possible when pfVol/T 1 << 1, where VO = max I VI. 

Introducing the system of coordinates x, y, z with the origin on the plane of sandwich attachment (in the 

center of the liquid layer), directing the X axis along the layer and the Z axis across (upward), we write the 
equations of plane liquid flow in the form 

aP (02Vx 02Vx) aP (a2vz 02Vz] 

-: ox  '0x 2 : o ,  -: oz tox" + oz2) : o ,  (a) 

av x av z 
o~ + ~ = o .  (4) 

The boundary conditions in the problem considered are the following. On the left motionless boundary of 
the layer the velocity of the liquid vanishes 

v x ( x , 0 , t )  = v  z ( x , 0 , 0 = 0 .  (5) 

On the free fight boundary of the layer, the strains in the liquid are compensated by atmospheric pressure P0 

- -  p n i  + <Tik n k = - -  P o n i  , (6) 

This means constancy of the normal and disappearance of the tangential stresses 

_ p + tTij rti rtj  : _ p o  ' t ~  rti ~ j  : O . (7) 

The tensor of viscous stresses a is determined by the relation 

OXi)  . (8) 

On the upper and lower surfaces adhesion conditions are satisfied which, according to (2), have the form 

(the coordinates z and Z of the two introduced systems coincide): 

0(0 ) 
Vz(~,~,t)=vo, v ~ ( - ~ , ~ , t ) = - v o ,  v o - - h ~  5- /  ' 

(9) 
v~ (H, z, t) = v~ ( -  H, z, t) = O.  
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By virtue of the problem symmetry 

v, ( -  x, z, t) = - v,  (x, z, 0 ,  v,  (0,  z, 0 = 0 .  

Incompressible fluid flow in the direction x, perpendicular to the layer, arises due to the decrease and increase by 

equal values in the volumes of the layer portions on opposite sides of the "neutral" plane x = 0, i.e., it has the 

character of "overflowing." It is natural to assume that the velocity of overflowing possesses symmetry 

v x ( -  x ,  z ,  t )  = v x ( x ,  z ,  O. 

With allowance for the latter relations we find the velocity of the fluid in the form 

2k- 1 2k 

Satisfying the continuity equation (4) we find that the coefficients in this expansions are related by the 

expression 

H , (I0) bt=-~at, k-- 1,2 .... 

(here and below the prime denotes the derivative with respect to z). 

Differentiating the first and second equations in (3) with respect to z and x, respectively, eliminating 

pressure, and equating the coefficicnts with equal exponents x, we obtain with allowance for (I0) for the coefficients 

of the equation 

- 0 + 2  a + 6 a 2 = 0 ,  

1 (H4 IV " / ( 1 1 )  
a k + 2 = -  (2k+  1 ) ( 2 k + 2 ) ( 2 k + 3 )  - ~  ak + 2/ ' /2(2k+ 1) ak+ l . 

If we omit small-scale flows, including the effect of the ends, from consideration and assume that the 

characteristic scale of the change in ak is equal to the rod length l, then, discarding terms of the order of (H/ / )  2 

and higher, we take the subsequent coefficients of the expansion to be equal to zero. It follows from the condition 

vz (H)  = VO t ha t  a2 = VO- al, and from the condition Vx( tD = 0 with allowance for (10) we have bo = 

H ( a '  1 + 1/0)/4. 
As a result Eq. (11) takes the form 

1 2 - H 4 IV H 4 
al = Vo + ~ / - / a l  - ~ al - -~-  ~o v .  

Hence it follows that with the adopted accuracy al -- Vo, a2 = 0, and the velocity of fluid flow is 

Vz = Vo (z, t)-~, Vx = ~ V'o (z, t) H I - . (12) 

The pressure distribution in the liquid layer is obtained by integrating the first equation in (3) with respect 

to x with allowance for (12): 

ox" (13) X v '  ~ x 
P =  Po - rI-H = Po - rlh H Ot " 

489 



2. Sandwich Oscillations. We proceed from the equations of dynamics of a rod slightly bent  unde r  the effect 
of an external  force [6] 

Pr Sr ~ o2X + E I x I V  = q (z, t) (14) 
Ot 2 

Here  1 - hb3/6  is the inertial moment  of the cross-section area of the rod relative to the axis y; q = d F x / d l  is the 

normal component  of the external  force F per length unit of the rod. The  effect of the liquid in ter layer  is caused 

by the inertia of its cross-section and also by the normal component  of viscous forces on the surface of the rods. 

For the lower base of the upper plate it is determined by the relation 

/ . / b  = e ( m  - eo - 27 ov,[  = . h r  = . h  o i  
dx  ] x=n  Ot " 

Thus,  the equation of sandwich oscillations can be written in the form 

(,o r S r + pf S f /2 )  ~ o 2 x  + E I X  IV - br/h 0X" = f (z, t) , (15) 
Ot 2 Ot 

where / is the excitation force. We consider forced oscillations under  the effect of a concentra ted periodic force FO 

cos (tot) applied to the free end of the rod. We write the equation for these oscillations in dimensionless form 

introducing the scale of distance, the rod length l, and the time scale: 

T = l 2 ( # r S r / I E )  1/2 

Since only viscous force acts along the rod length, this equation has the form (the previous notation is preserved 

for dimensionless variables) 

t~4 02X + xIV OX" 
- v -  = 0 ,  ( 1 6 )  

Ot 2 Ot 

where  

p f H  r/ ( Sr /1 /2  
~4 = 1 + 2Prh ; v = ~ ~PrIE) 

The  boundary  conditions at the at tached end (z = 0) are X = O, X'  = 0 and on the free end (z = 1) 

X" = 0 and X" = f cos (tot), where / = Fol3 /EI .  The  first condition on the free end expresses,  as is known, the 

absence of force moments applied to it, and the second, the equality of the force of inner stresses to the force 

applied to the end. 

We consider the s teady-s ta te  oscillations of the sandwich. Seeking the solution in the form 

X = exp (/tot) ~ (z ) ,  

we obtain the equation for 

~4 2~ + /OARS" -- ~IV = 0.  (17) 

The  corresponding characteristic equation 

,~4 _ itov,~2 _ 2t~4 = 0 (18) 
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has the solution 

2 2  - -  +-- t o ~  2 1 - -  

1 / 2  

+ kin , /2 .  

For real and imaginary components A (2 = 2' + / a ' ) ,  hence we have 

2 '2  - - 2  "2 = +---to62 1 - -  2 '  2"  - -  t o y  (19) 

T h e  s y s t e m  (19) possesses  the  fol lowing properties.  If the pair of numbers  2' = rl,  2" = r 2 are roots,  then  

the pairs of  numbers  2' - - r l ,  2" = - r2 ;  2' = rz, 2" - rl ,  and  2' = - r  2, 2" - - r l  are also roots of  Eqs. (19) .  

Consequent ly ,  the solut ion of  the characteristic equation can be written in the  form 

a ~ = a + / # ,  2 2 = - a - t a ,  2 a = p + / a ,  2 4 = - / ~ - / a ,  

1 -  , f l = - - .  
4a 

(20) 

(21) 

(22) 

and in this case in follows from (19) for a and fl 

a = ~  f l  + 

In the case of small v, retaining terms of the first order in v, we have 

v ~ -  
4~ 

We distinguish from the general solution of Eq. (16) 

X = exp ( ~ t )  (C l exp (21z) + C 2 exp (2zZ) + C a exp (23z) + C 4 e x p  ( 2 4 z ) )  

(Ci are the complex constants) its real part, having written it in the form 

X = X 1 (z) cos tot + X 2 (z) sin tot.  (23) 

Here the functions Xl,  X2 are the superposition of all possible products of the trigonometric and hyperbolic sine 

and cosine of arguments az  and flz. Presenting their set �9 in an ordered form 

= {cos (flz) ch (az ) ,  cos (flz) sh (az) ,  sin (flz) ch (az), sin (flz) sh (az) ,  

cos (az) ch (flz), cos (az) sh (flz), sin (az) ch (flz), sin (az) ch (flz)} , 

we write (n = 1, 2) 

8 

X n (z) = E p(0) ~ i  (z) (24) 
- - / t /  

i=1 

Among the sixteen coefficients presented here, only eight are independent.  Let the coefficients in X1 be them; the 

rest are related to them by the expressions 

p (0 )=  o(0) o(0) u(0) D(0) _ o(0) D(0) __ p~0) 
- -14  ' - -22  --'----13 ' - -23  = - - 1 2  ' - -24  = 

p(0) o(0) o(0) = a(0) D(0) a(0) D(0) O(0) 
25 = " 1 8  , " 2 6  - -17  ' " 2 7  = - - " 1 6  ' ~ 2 8  = - - " 1 5  �9 
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T h e  values of  p~O) are  found  f rom the  b o u n d a r y  condi t ions:  

x~ = x2  = 0 ,  x l  = s  = 0 (~ = o ) ,  (25) 

= X  = 0 ,  X 2 = 0 ,  X 1 -----f ( z =  1) .  

T h e  derivat ives of  Xn with respect  to z can also be p resen ted  in the fo rm (24).  We have for  the  k - th  

derivative 

8 p ~ )  
xC: ) (') = E oi ( 0 ,  

i=1 

with the  coefficients P(~) being re la ted  by  the  recur ren t  relat ions:  

nkl) ~(k- 1) a_ n o ( k - l )  D(k) n(k- 1) .a_ n o ( k - l )  a(k) n(k- 1) h a ( k -  1) 
P -- a m 2  - t-'- n3 , " n2 = a / ' n l  - t"--n4 , --n3 = a m 4  - - / ' h i  , 

p(k)  ~(k -  1) a a ( k -  1) ~ )  a a ( k -  1) _ (k -  1) a(k) a a ( k -  1) _ ( k -  1) 
n4 = at 'n3 -- t"~n2 , P = t-'--n6 + at 'n7 , "n6  = I"ln5 + ~ , 

T h e  b o u n d a r y  condi t ions  a re  wr i t ten  in the  form (n = 1, 2) 

8 
+ = 0 ,  PC.'1) + = 0 ,  X (1) = 0 ,  

i=1 (26) 

8 8 
X o(3) q)i (l) = 0 X p(3) q)i (I) = / t'(~ ~(0) u(O) o(0) --2i ' li , "15 --------11 , --18 = - - - 1 4 "  
i=1 i=1 

Simplifying the  nota t ion  (Pt  O) ffi P i ) ,  we f ind for  the  coefficients P5 - P8 the  re la t ions:  

P5 = - PI  , P6 = ( A / C )  P3 - ( B / C )  P 2 ,  

P7 = - ( A / C )  P2 - ( B / C )  P3 , P8 = - P4-  

where  A = a 2 - f12; B -- 2aft; C -- a 2 -I- f12, a nd  the coefficients P1 - P4 are  found  f rom the  s y s t e m  of equa t ions  

MijPj  ffi Ni  (where  N ffi (0, 0, 0, t ) ) :  

M l l  = At~ I -- Bt~ 4 + A ~  5 + B ~  8 , MI2  = Aq~ 2 - B ~  3 + C ~  7 , 

M13 = B ~  2 + A ~  3 -  C ~  6 ,  MI  4 =  B ~  1 + A ~  4 -  Bt~ 5 + A ~  8 ,  

M21 = - Bq~ 1 - A c l )  4 + B ~  5 - A q )  8 ,  M22 = _ BtI~ 2 - A ~  3 + Ct~ 6 ,  

M23 = A ~  2 -  B ~  3 + C ~  7 ,  M24 = A ~  1 - B ~  4 + A ~  5 + B ~  8 ,  

3/31 = _ A I ~  2 -  B I ~  3 -  B I ~  6 - A ~  7 ,  )9/32= _ A I ~  1 - B I ~  4 +flCCP 5 - c t C r  8 ,  

M33 = Blq) 1 - AlCl) 4 + aCt~  5 + f l C t ~  8,  M34 = Blt~ 2 -  Alq) 3 + Alq~ 6 -  Bl t~ 7 ,  

M41 = Blq) 2 - A l q )  3 + Alq~ 6 -  Blt~ 7 ,  M42 = Blq) 1 - Alq~ 4 + a C l q )  5 + f l C q )  8 ,  

M43 = A I ~  1 + B I ~  4 - f l C c p  5 + a C ~  8 ,  M44 = A I ~  2 + B I ~  3 + B 1 ~  6 + A I ~  7 ,  
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Fig. 1. Change in the amplitude-frequency characteristic of a three-layered 
rod with a liquid interlayer with an increase in the viscosity parameter v (c$ 

=1) .  

Fig. 2. Resonance  amplitude A as a funct ion of the viscosity parameter 

with A 1 = aA  + f i B ,  B = a A  - f iB ,  and the values of the functions ~i(z) are taken at the point z = 1. 
We study the effect of the liquid interlayer on sandwich oscillations. According to (23),  we write the time 

dependence of bending in the form 

X (z, t) = X 0 (z) cos [rot - ~o (z) ] ,  

where the amplitude and the phase of oscillations are determined according to 

X2 Xo=(X21 +X~2) 1/2, tan~p=~-~- 1. 

We consider the amplitude-frequency characteristic of the first mode of oscillations of the sandwich end 

A(to), which is normalized over the amplitude on the zeroth frequency. The effect of the liquid interlayer is 

determined by the parameters ~ and v. The first characterizes the increase in mass at fixed elasticity and its growth 
decreases the eigenfrequency of oscillations. The parameter v, characterizing viscosity, enters into the solution, 

according to (21), in the combination v/(232),  whose maximum admitted value is equal to 1. The amplitude- 

frequency characteristic is shown in Fig. 1. Here the amplitude is referred to the deviation A(0) of the sandwich 

end under the effect of a constant force, and frequency, to the eigenfrequency of the considered mode of oscillations 

of a rigid rod without losses (the value of this frequency in terms of T - I  is oJ l = 3.52 [61). The dependence of the 

amplitude of oscillations on the value of the parameter v/232 is presented in Fig. 2. As is seen, over practically the 

entire range of variation of this parameter an inversely propotional dependence takes place: 

A / A  (0) = 4~32/v. 

A small deviation is observed only near the limiting value v/(262) = 1. 

The value of liquid viscosity corresponding to the condition v/(262) = 1 is determined according to (6 = 1) 

r l = b  p 

With the thickness of rods equal to 1 mm and the values of #r = 10 g/cm 3, E = 1012 dyne/cm 2 typical for 

metal, we find a value of r 1 of the order of 10 5 poise. Thus, strong damping is possible when extremely viscous 
liquids are used. Extremely viscous liquids, however, possess elasticity with an ultimate time of relaxation of the 

stressed state [6 ]. The allowance for this factor may be the subject of a separate study. 
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N O T A T I O N  

l, b, h, length, width, and half-height of elastic rods; H, half-height of liquid layer; X, Y, Z and x, y, z, 
coordinates in systems associated with elastic rod and liquid layer; n, ~, unit vectors of normal and tangent to liquid 
surface; V, velocity of longitudinal motion of point along surface of elastic rod; v, P, ~7, Pf, velocity, pressure, 
viscosity, and density of liquid; aij, tensor of viscous stresses; E, Pr, l ,  Young's modulus, material density, and 
inertial moment of cross-section area of elastic rods; St, Sf, areas of rod cross-section and liquid interlayer; A, w, 

dimensionless amplitude and frequency of oscillations; J, v, dimensionless parameters characterizing increase in 
sandwich mass due to liquid and ratio of viscous to elastic forces. Subscripts: r, rigid; f, fluid. 
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